# Decode Pooled Lentiviral shRNA Screening Laboratory Protocols & Calculation Tracking

These laboratory protocols and calculation tracking sheets are provided as a benchtop guide for using this product. We strongly recommend that you thoroughly read through the technical manual before using this guide.

| Section V                                                                                                                                                                                              | V. Assay Development and Optimization: Transduction Parameters                                                                                      |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| A. Op                                                                                                                                                                                                  | timization of Lentiviral Transduction                                                                                                               |  |  |  |  |  |
| Tran                                                                                                                                                                                                   | sduction conditions should be determined for your cell line and screening conditions and can be noted here:                                         |  |  |  |  |  |
| Transduction medium: % FBS (0.5-2% recommended)                                                                                                                                                        |                                                                                                                                                     |  |  |  |  |  |
| Tra                                                                                                                                                                                                    | ansduction duration: hours (4-24 hours recommended)                                                                                                 |  |  |  |  |  |
| Tra                                                                                                                                                                                                    | ansduction medium additives: µg/mL Polybrene (0-10 µg/mL recommended)                                                                               |  |  |  |  |  |
| Ce                                                                                                                                                                                                     | Il density at transduction: cells/mm <sup>2</sup>                                                                                                   |  |  |  |  |  |
| R Do                                                                                                                                                                                                   | termination of Euroctional Titer                                                                                                                    |  |  |  |  |  |
| D. Der                                                                                                                                                                                                 | ade leptimized shPNA pool titor on provided in Cartificate of Applysic (C of A):                                                                    |  |  |  |  |  |
| CIDZ                                                                                                                                                                                                   | Some reliance control titer as provided in Certificate of Analysis (C of A). The $T_{\rm cont}$                                                     |  |  |  |  |  |
| GIPZ                                                                                                                                                                                                   | The day before transduction each a 06 well call culture plate (Destinction Plate) with your calls at                                                |  |  |  |  |  |
| ו.<br>כ                                                                                                                                                                                                | Make dilution medium using % ERS andug/mL Polybrane                                                                                                 |  |  |  |  |  |
| <ol> <li>Make dilution metidin using% FBS andµg/mL Forybrene.</li> <li>Make dilutions of CIPZ non-ailensing control lentiviral particles in a round bettern 06 well plots (Dilution Plots).</li> </ol> |                                                                                                                                                     |  |  |  |  |  |
| Wake one row of the plate for each replicate of the dilution series of the lestivited stock.                                                                                                           |                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                        | a Add 40 ul, of dilution medium to wells A1 and B1. Add 80 ul, of dilution medium to each well A2-A8 and B2-B8                                      |  |  |  |  |  |
|                                                                                                                                                                                                        | <ul> <li>b. Thay GIPZ non-silencing control lentiviral particles on ice and then add 10 µL each to wells A1 and B1.</li> </ul>                      |  |  |  |  |  |
| Mix contents of each well by pipetting 10-15 times. Discard pipette tip                                                                                                                                |                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                        | c. Transfer 20 µL from wells A1 and B1 to the corresponding wells in column 2.                                                                      |  |  |  |  |  |
|                                                                                                                                                                                                        | Mix contents of each well by pipetting 10-15 times. Discard pipette tip.                                                                            |  |  |  |  |  |
|                                                                                                                                                                                                        | d. Repeat transfer of 20 µL for columns 2 through 8, mixing 10-15 times for each dilution.                                                          |  |  |  |  |  |
|                                                                                                                                                                                                        | e Allow lentiviral particle-Polybrene complexes to form for 3-5 minutes at room temperature.                                                        |  |  |  |  |  |
| 4.                                                                                                                                                                                                     | Remove culture medium from the cells in the 96-well plate.                                                                                          |  |  |  |  |  |
| 5.                                                                                                                                                                                                     | Transfer 25 µL of each dilution of virus from the 96-well dilution plate to the corresponding wells in the Destination Plate.                       |  |  |  |  |  |
|                                                                                                                                                                                                        | Be careful to not create bubbles.                                                                                                                   |  |  |  |  |  |
| 6.                                                                                                                                                                                                     | Incubate the cells for hours.                                                                                                                       |  |  |  |  |  |
| 7.                                                                                                                                                                                                     | Add 75 $\mu$ L of normal growth media to cells.                                                                                                     |  |  |  |  |  |
| 8.                                                                                                                                                                                                     | Culture cells for 48-72 hours.                                                                                                                      |  |  |  |  |  |
| 9. Choose one well in the transduction plate for counting TurboGFP-expressing colonies of cells.                                                                                                       |                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                        | Count each multi-cell colony as one transduction event.                                                                                             |  |  |  |  |  |
|                                                                                                                                                                                                        | Calculate the average number of 1 urboGFP-positive colonies from the same destination well of each replicate.                                       |  |  |  |  |  |
| Functional titer of non-silencing control in your cell line:                                                                                                                                           |                                                                                                                                                     |  |  |  |  |  |
|                                                                                                                                                                                                        | TurboGFP-positive colonies $\mathbf{X}$ Dilution factor $\mathbf{A}$ or $\mathbf{D}$ Dilution factor $\mathbf{A}$ 0.025 ml = TU/ml functional titer |  |  |  |  |  |
|                                                                                                                                                                                                        | Relative transduction efficiency of your cell line:                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                                        | Functional titer of non-silencing Titer of non-silencing control lentiviral particles stock Relative transduction                                   |  |  |  |  |  |
|                                                                                                                                                                                                        | control in your cell line - as calculated by Thermo Scientific in HEK293T = efficiency of your cell line                                            |  |  |  |  |  |
|                                                                                                                                                                                                        | TU/mL functional ÷ TU/mL = relative transduction efficiency                                                                                         |  |  |  |  |  |
|                                                                                                                                                                                                        | Functional titer in your cell line (calculate for every Decode pool):                                                                               |  |  |  |  |  |
|                                                                                                                                                                                                        | Relative transduction Titer of the lentiviral pool, as calculated by Anticipated functional                                                         |  |  |  |  |  |
|                                                                                                                                                                                                        | efficiency of your cell line <b>X</b> Thermo Scientific in HEK293T cells <b>=</b> titer in your cell line                                           |  |  |  |  |  |
|                                                                                                                                                                                                        | Relative transduction efficiency XTU/mL =TU/mL anticipated functional titer                                                                         |  |  |  |  |  |
| C. On                                                                                                                                                                                                  | timization of Puromycin Selection                                                                                                                   |  |  |  |  |  |
| 1.                                                                                                                                                                                                     | On day 0, plate cells at a density appropriate for your cell type. Incubate overnight.                                                              |  |  |  |  |  |
| 2.                                                                                                                                                                                                     | On day 1 change to fresh medium supplemented with puromycin at a range of concentrations (0-15 $\mu$ g/mL).                                         |  |  |  |  |  |
|                                                                                                                                                                                                        | Incubate for 3-6 days.                                                                                                                              |  |  |  |  |  |
| 3.                                                                                                                                                                                                     | <ol> <li>Approximately every 2-3 days replace with freshly prepared puromycin medium.</li> </ol>                                                    |  |  |  |  |  |
| 4.                                                                                                                                                                                                     | 4. Monitor the cells daily and visually observe the percentage of surviving cells.                                                                  |  |  |  |  |  |
|                                                                                                                                                                                                        | Optimum effectiveness should be reached in 3-6 days under puromycin selection.                                                                      |  |  |  |  |  |
| 5.                                                                                                                                                                                                     | The minimum antibiotic concentration to use is the lowest concentration that kills 100% of the cells in 3-6 days                                    |  |  |  |  |  |
|                                                                                                                                                                                                        | nom the start of antibiotic selection:                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                        | Pare of antibiotic solection: days (2.6 days recommended)                                                                                           |  |  |  |  |  |
|                                                                                                                                                                                                        | Days of antibiotic selection days (5-0 days recommended)                                                                                            |  |  |  |  |  |

### Section VI. Assay Development and Optimization: Screening Parameters

A. Assay-specific Screening Conditions Assay-specific conditions, such as application of selective pressure and phenotypic selection, should be determined and optimized before beginning the screen. Wherever possible, optimize your assay using a positive control shRNA against a known gene target. B. Average shRNA Fold Representation During Transduction and Number of Biological Replicates Critical parameters to decide upon include average shRNA fold representation and the number of biological replicates. The technical manual provides details on how to determine these factors. fold representation (> 500 recommended) Average shRNA fold representation during transduction: Number of biological replicates: replicates (> 2 recommended) C. Number of Cells Needed for Transduction Desired number of cells with lentiviral integrants (calculate for every Decode pool): Number of shRNA constructs in the lentiviral pool X shRNA fold representation = Desired number of cells with lentiviral integrants shRNAs X Fold representation = Cells with lentiviral integrants Desired MOI: Number of cells required at the time of transduction (calculate for every Decode pool): Desired number of cells Proportion of cells with \_ Required number of cells at with lentiviral integrants lentiviral integrants the time of transduction proportion of cells with integrants = cells with lentiviral integrants ÷ Cells required at transduction

Number of plates required per sample (calculate for every Decode pool):

Cells required at  $\div$  Cell density at  $\div$  Size of plate = Number of plates transduction  $\div$  (mm<sup>2</sup>) = required per sample

ransduction  $\overline{}$  transduction  $\overline{}$  (mm<sup>2</sup>)  $\overline{}$  required per sample

cells required at transduction ÷ \_\_\_\_\_cells/mm<sup>2</sup> ÷ \_\_\_\_\_mm<sup>2</sup> per plate = \_\_\_\_\_plates per sample

## D. Volume of Lentiviral Particles Needed for Transduction

Transducing units of lentiviral particles (calculate for every Decode pool):

Desired MOI X Number of cells at the time of transduction = Required number of transducing units

MOI X Cells required at transduction =

Volume of lentiviral particles per sample (calculate for every Decode pool):

Number of transducing units (TU) ÷ Functional titer in your cell line (TU/mL) = Volume of lentiviral particles per sample (mL)

TU ÷ \_\_\_\_\_ TU/mL functional titer = \_\_\_\_\_ mL lentiviral particles

## Volume of lentiviral particles per pool (calculate for every Decode pool):

Volume of lentiviral particles per sample (mL) X Number of biological replicates = Volume of lentiviral particles per pool (mL)

mL lentiviral particles X Biological replicates = mL lentiviral particles per pool

## Section VII. Primary Screen

A. Cell Transduction and Selection Screening

- 1. On day 0, seed cells in normal growth medium. Incubate overnight.
- 2. On day 1, remove the growth medium and add medium with \_\_\_\_\_% FBS, \_\_\_\_µg/mL Polybrene and the appropriate volume of lentiviral particles so that the cells are just covered.

If a single lentiviral shRNA pool will be added to multiple plates, divide the volume of lentiviral particles evenly between plates.

- 3. \_\_\_\_hours post-transduction, add additional normal growth medium to your cells such that the cells can be incubated for 48-72 hours.
- 4. At 48-72 hours post-transduction, examine the cells microscopically for the presence of TurboGFP reporter expression.
- 5. Begin puromycin selection to remove non-transduced cells. Monitor the cells daily.
- Every 2-3 days, replace with fresh medium containing puromycin. Once a pure population of transduced cells has been obtained be
  - Once a pure population of transduced cells has been obtained, begin selection screening.
  - Split cells into at least two populations: one as a reference and another for application of selective pressure and phenotypic selection.

Maintain your desired shRNA fold representation in the library at each cell passage.

## B. Genomic DNA isolation

- Collect cells for gDNA isolation by trypsinizing and counting. Use at least the number of cells that corresponds to the desired number of viral integrants. Follow manufacturer's protocol for gDNA isolation (Qiagen Blood and Cell Culture DNA Maxi Kit Cat #13362 recommended). Combine gDNA isolations after elution, as needed.
- 2. Quantify the isolated gDNA using a spectrophotometer and assess the DNA purity by spectrophotometry.

#### C. PCR Amplification of shRNA Hairpins from gDNA

| i. | Number of PCR reactions<br>Grams of gDNA required to maintain shRNA fold representation (calculate for every Decode pool):                                                |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Number of cells with viral integrants x Nanograms per genome = Mass of gDNA required to maintain representation of each shRNA                                             |
|    | cells with lentiviral integrants <b>X</b> 6.58 x 10 <sup>-3</sup> ng/genome* = ng gDNA *diploid                                                                           |
|    | Number of PCR reactions per sample (calculate for every Decode pool):                                                                                                     |
|    | Mass of gDNA required to maintain<br>representation of each shRNA ÷ ng per PCR = Number of PCR reactions required to<br>maintain representation of each shRNA             |
|    | ng gDNA ÷ 825 ng/reaction = PCR reactions per sample                                                                                                                      |
|    | Number of PCR reactions per pool (calculate for every Decode pool):<br>Number of PCR reactions per sample X Number of samples per pool = Number of PCR reactions per pool |

PCR reactions per sample **X** Samples per pool **=** PCR reactions per pool

## Units of Phusion HotStart II DNA Polymerase required per pool (calculate for every Decode pool):

Number of PCR reactions per pool X Units of polymerase per PCR reaction = Units of polymerase per pool PCR reactions per pool X 4 Units/PCR reaction = Units Phusion HSII

#### ii. Multiplexing

### Sequencing reads per sample

Number of shRNA constructs in lentiviral pool X Read coverage per shRNA = Output reads required per sample shRNAs X 1,000 reads/shRNA = \_\_\_\_\_ Output reads required per sample

## Sample indices per sequencing lane

Expected deep sequencing read output ÷ Output reads required per sample = Sample indices per lane Reads ÷ Output reads per sample = Indexes per lane

## iii. PCR from genomic DNA

1. PCR components for shRNA amplification (calculate Master Mix for every sample)

| Component                                          | Reaction<br>Volume (uL) | Final<br>Concentration | Master<br>Mix (uL) | # of reactions per sample |
|----------------------------------------------------|-------------------------|------------------------|--------------------|---------------------------|
| 5x Phusion HF Buffer                               | 10                      | 1x                     |                    |                           |
| 10 mM dNTPs                                        | 1.0                     | 200 μM each            |                    |                           |
| Decode Forward PCR Primer (50 µM)                  | 0.5                     | 0.5 μM                 |                    |                           |
| Decode Reverse Indexed PCR Primer (50 µM)          | 0.5                     | 0.5 μM                 |                    |                           |
| 5 M Betaine                                        | 5                       | 0.5 M                  |                    |                           |
| gDNA (825 ng) + PCR grade H <sub>2</sub> O         | 31                      | 16.5 ng/μL             |                    |                           |
| Phusion Hot Start II DNA polymerase (2 U/ $\mu$ L) | 2                       | 0.08 U/μL              |                    |                           |
| Total                                              | 50 ul                   |                        |                    |                           |

#### 2. PCR cycling conditions

| Cycles | Temperature | Time       |  |
|--------|-------------|------------|--|
| 1      | 98 °C       | 3 minutes  |  |
|        | 98 °C       | 10 seconds |  |
| 23     | 57 °C       | 15 seconds |  |
|        | 72 °C       | 15 seconds |  |

3. Combine reactions amplifying the same gDNA sample into a single 1.5 mL tube. Confirm that a 660-base pair amplicon is achieved from each sample by running 10 µL of PCR product on a 2% agarose gel.

- 4. Purify PCR-amplified gDNA.
- 5. Evaluate purified gDNA using the quality standards recommended by your Illumina platform.

## Section VIII. Illumina Platform Sequencing

Follow the manufacturer's instructions for Illumina platform sequencing. Load Illumina flow cell with gDNA sample (we recommend 5-10 pM using standard loading volumes). Obtain at least 22 single-end reads with the provided Decode Read 1 Sequencing primer. Perform index read with Decode Index Read Sequencing primer.

## Section IX. Hit Identification and Follow Up

#### Bin each index tag.

Trim sequences to 22 base pairs.

Align sequence reads with FASTA files provided with your Decode pool.

Count the number of alignments for each shRNA.

Perform differential expression analysis to determine primary hits.